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Three-Body Problem in the Theory of the 
Dielectric Constant 
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We study the corrections to the Clausius Mossotti formula for the dielectric 
constant of a disordered system of polarizable spherical particles. Previously we 
have derived an exact cluster expansion for the correction terms. Here we study 
the three-body correction in detail. We derive an explicit expression for the 
integrand of the three-body cluster integral for a system of polarizable point 
dipoles. 
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1. I N T R O D U C T I O N  

In this pape r  we s tudy n o n p o l a r  dielectrics consis t ing of a d i sordered  a r r ay  
of ident ical  spher ical  part icles  immersed  in a uniform b a c k g r o u n d  with 
dielectr ic  cons tan t  el- The part icles  m a y  be inclusions with a spherical ly  
symmet r ic  dielectr ic  profile,  or  they m a y  be spheres with a po la r izab le  
po in t  d ipole  at  their  center. In  a previous  article, (1) referred to as I, we have 
shown, fol lowing earl ier  work  by  Fe lde rho f  et al., (2~) tha t  the effective 
dielectr ic cons tan t  E* of  such a system may  be wri t ten in the form 

e* -- ~1 47znc~/3~1 

e* + 2ei - 1 - (47~nc~/3el)(2 +/~)  
(1.1) 

where n is the n u m b e r  densi ty  and  ~ is the d ipole  po la r izab i l i ty  of a 
part icle.  The  d e n o m i n a t o r  on  the r igh t -hand  side represents  the cor rec t ion  

i Institut fiir Theoretische Physik A der RWTH Aachen, 5100 Aachen, Federal Republic of 
Germany. 

2Permanent address: Institute of Theoretical Physics, Warsaw University, PL-00-681 
Warsaw, Poland. 

871 

0022-4715/89/1100-0871$06.00/0 �9 1989 Plenum Publishing Corporation 
822/57/3-4-29 



872 Cichocki and Felderhof 

to the Clausius-Mossotti formula. In I we have derived exact cluster 
expansions for the dimensionless coefficients 2 and # of the form 

2 = ~  ;~s,  # : ~  /*, (1.2) 
s - - 2  s = 2  

where As and #s are given by absolutely convergent cluster integrals over 
the solution of a dielectric problem involving s spheres. In this paper we 
study the three-body terms 23 and/~3 in detail. 

In Sections 2-4 we describe the model and summarize our previous 
results. In Section 5 we give detailed expressions for the so-called nodal 
connectors appearing in the two- and three-body cluster integrals. In 
Section 6 we derive the explicit expressions for the integrands of the three- 
body cluster integrals for the case of the polarizable point dipole model. 
The paper is concluded with a discussion. 

2. M I C R O S C O P I C  D E S C R I P T I O N  

We consider a dielectric system consisting of N nonoverlapping spheri- 
cal inclusions embedded in a uniform background of dielectric constant e~. 
The inclusions are identical, each of radius a, and are characterized by a 
spherically symmetric dielectric constant. For a fixed configuration of inclu- 
sions in which they are centered at R1, R2,..., R N, the dielectric constant at 
a field point r is then 

. . . .  f e l ,  [ r - R j l  > a  ( j = l  ..... N) (2.1) 
e(l '"" ~v' r) = ~ ~([r-- Rj[), I r - R j l  < a  

The basic equations for the electric field E and the dielectric displacement 
D are Maxwell's electrostatic equations 

V.D=47rpo, V •  D = e E  (2.2) 

where Po = P0(r) is a fixed charge distribution, independent of the con- 
figuration of the inclusions. The applied field Eo(r ) is the solution of Eqs. 
(2.2) with e a uniform dielectric constant el. We define the induced 
polarization, relative to the medium in the absence of inclusions, via the 
relation 

D = e~E + 4 n P  (2.3) 

We define the scattering operator M (1) for a single inclusion, isolated 
in the uniform medium and centered at R1, from the equation 

P(r) = f M(R~ ; r, r')- Eo(r') dr' (2.4) 
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where Eo(r) is an arbitrary applied field. We note that the operator M(1) 
is localized about R~ in the following sense: 

Mjk(1;r,r')=0 if I r - R l l > a  or Ir'-R~l>a (2.5) 

It can be shown that the kernel is symmetric, 

Mjk(1; r, r ' ) =  Mky(1; r', r) (2.6) 

The localization property (2.5) follows from the fact that for a single 
inclusion the induced polarization is nonvanishing only within a sphere of 
radius a about R1, and from the symmetry (2.6). The dipole polarization 
of the inclusion is given by 

= t l  M(1;r, r ' ) d r  d r ' =  (0[ M(1)I 0) (2.7) 
J d  

where the second equality defines a useful shorthand notation. 
It is often convenient to consider a simplified model of polarizable 

point dipoles. In this model the dielectric constant is el everywhere, but 
each inclusion has a polarizable point dipole with polarizability e at its 
center. In this case the induced polarization is defined by 

N 

P(r) = ~ pj 6(r - Rj) (2.8) 
j - - 1  

where P2 is the dipole moment at the center of inclusion j, and the dielectric 
displacement D is defined by (2.3). The scattering operator for a single 
inclusion is given by 

M(1; r, r') = M 6(r - R1) 6(r' - R~) (2.9) 

For N inclusions the dipole moment pj is proportional to the field acting 
at Ry, so that the N dipole moments are given by the set of coupled 
equations 

py = ~ IE0(Rj) + ~ "['y~ �9 p~], j=I,...,N (2.10) 
k v~j 

where l-jk =-I-(R i -  Rk) is the dipole tensor defined from the tensor field 

- 1  + 3 f f  
T(r) = (2.11) 

E: 1 r 3 

Our explicit calculation in this paper will be limited to the point dipole 
model. 
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3. EFFECTIVE DIELECTRIC C O N S T A N T  

In this section we recall the definition of the effective dielectric 
constant e* of a macroscopically large system of randomly distributed 
inclusions. Moreover, we recall the exact expressions for the coefficients 2 
and # occurring in (1.1). 

We describe the disordered system of inclusions by a distribution 
function W(1 ..... N). The probability distribution is assumed normalized to 
unity and symmetric in the labels 1 ..... N. The partial distribution functions 
are defined by 

N~ 
n(1 ..... s)=(N_s)-----~.f...fdRs+i...dRN W(1 ..... N) (3.1) 

We assume that on average the inclusions are distributed uniformly and 
isotropically in a volume f2 with density n = N/f2. In our final expressions 
we take the thermodynamic limit N--* o% f2 ~ oe at constant n = N/O. 

Averaging over the probability distribution W(1 ..... N), we obtain the 
average polarization ( P )  and the average electric field ( E ) .  These average 
fields vary only on a length scale large compared to the average distance 
between inclusions. Eliminating the applied field Eo(r), we find that the 
averages are related by 

(P ( r ) )  = f  X(r, r')" (E ( r ' ) )  dr' (3.2) 

with a linear susceptibility kernel X(r, r'). In the bulk of the system this 
kernel becomes ttanslationally invariant in the thermodynamic limit, and 
dependent only on the difference r - r ' .  For a macroscopic field (E( r ) )  
which varies slowly over the range of the kernel we may then replace (3.2) 
by the local relationship 

( P )  = •*(E)  (3.3) 

where the effective susceptibility X* is given by the integral of the suscep- 
tibility kernel X ( r -  r'). The effective dielectric constant is given by 

e* = ~1 + 472•* (3.4) 

In I we have shown that ~* may be expressed exactly by a generaliza- 
tion of the Clausius-Mossotti formula, as given by (1.1), with dimen- 
sionless coefficients 2 and # which each may be expressed in terms of a 
cluster expansion, as written in (1.2). The coefficient 2 is given by 

4rcn~2 Tr(0l M(1) S(1) M(1)I0) (3.5) 
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where we have used the notation of (2.7) and the trace is taken with respect 
to the Cartesian components of the tensor. The reaction field operator S(1) 
is given by the cluster expansion (~) 

S(1)= ~ Ss(1) (3.6) 
s = 2  

where S~(1) is defined as an average scattering operator for s inclusions. 
Similarly, the coefficient/~ is given by 

f dR2 (OI M(1) S.o(1, 2) M(2) I O) /~ - -  _ 4 / l : ~ 2  
Tr (3.7) 

where the operator Sno(1, 2) is the nonoverlap contribution to the short- 
range connector S(1, 2). The latter has again a cluster expansion (1) 

S(1, 2 )=  ~ S~(1, 2) (3.8) 
s = 2  

and may be written 

S(1, 2) = Sno(1, 2) - O(2a- IR1 - R21 )Go (3.9) 

where O(x) is the step function and Go is the Green function for the 
uniform medium with dielectric constant el. The explicit form for Go acting 
on a given vector field V(r) is 

47r V(r) 
[ G o ' V ] ( r ) =  - 3e--~ 

f dr' 3(r - r ')- V(r')(r - r') - ( r -  r') 2 V(r') + (3.10) J, e l l r - r ' !  5 

where the subscript & on the integral indicates that the integral is carried 
out with the exclusion of an infinitesimally small sphere centered at r. In 
(3.5) and (3.7) the center R~ of inclusion 1 may be taken to be at the origin 
without loss of generality. 

4. T W O -  A N D  T H R E E - B O D Y  C O N T R I B U T I O N S  

In this section we specify the two- and three-body contributions to the 
coefficients 2 a n d / t  in more detail. First we recall the explicit expressions 
for the two- and three-body contributions to the reaction field operator 
S(1) and the short-range connector S(1, 2). 
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The two-body contribution to S(1) is given by 

$2(1) = f d2 n(2) k(1, 2) N ll(l, 2) (4.1) 

where k(1, 2)= g(1, 2) is simply the normalized two-particle distribution 
function defined by n(1, 2)=n(1)n(2)g(1,  2), and Nu(1, 2) is a two-body 
nodal connector defined in terms of the two-body dielectric problem. The 
three-body contribution to S(1) is given by 

f ,  
$3(1) = j d2 d3 n(2) n(3)[k(1, 2, 3) Nu(1, 2, 3) 

+k(1, 2t 1, 3) Nil(1 , 211, 3)] 

with the chain correlation functions 

(4.2) 

k(1, 2, 3)= g(1, 2, 3), k(1,211, 3)= g(1, 2, 3 ) -g (1 ,  2)g(1, 3) (4.3) 

where g ( 1 , 2 , 3 ) i s  defined by n(1,2,3)=n(1)n(2)n(3)g(1,2,3). The 
nodal connectors in (4.2) are defined in terms of the three-body dielectric 
problem and will be described in more detail in the next section. We merely 
note that they correspond to scattering sequences involving three inclusions 
in which the first and the last scatterer have the label 1. 

Similarly, the two-body contribution to the short-range connector 
S(1, 2) is given by 

$2(1,2) = g(1, 2)[N 12(1, 2 ) -  Go] + h(1, 2)Go (4.4) 

where h(1, 2) = g(1, 2 ) -  1. The three-body contribution to S(1, 2) is given 
by 

t" 

$3(1, 2) = J d3 n(3)l-k(1, 2, 3) N 12(1, 2, 3) + k(1, 212, 3) N 12(1,212, 3) 

+ k(l, 2, 3) NlZ(I, 3, 2) +k(1, 311, 2) N12(1, 311, 2) 

+ k(1,312, 3) N 12(1,313,2)] (4.5) 

The chain correlation functions k are defined in analogy to (4.3) and the 
operators N12 are again various nodal connectors. 

The two- and three-body contributions to the coefficients 2 and # may 
now be found by substitution of the above expressions into (3.5) and (3.7). 
The two-body contributions are combined conveniently in the form 
22 + #2. This contribution has been studied in detail by several authors (3'5) 
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and will not be discussed further here. The three-body contribution 23 may 
be written as 

~3 = ~3(1, 2, 3)+23(1,  211, 3) (4.6) 

corresponding to the two terms in (4.2). Similarly, the three-body contribu- 
tion #3 may be written as a sum of five terms 

#3 =#3(1, 2, 3)+#3(1 ,212,  3)+#3(1,  3, 2) 

+#3(1, 311, 2 )+#3 ( t ,  3[3, 2) (4.7) 

corresponding to the decomposition in (4.5). 
In (1.1) we need the sum 23+#3 and it is convenient to divide the 

terms in (4.6) and (4.7) into two groups. From (3.5), (3.7), (4.2), and (4.5) 
we find 

23(1, 2, 3 ) +  #3(1, 2, 3 )+  #3(1, 3, 2) 

= 4~zcd n f dR2 dR3 g(1, 2, 3) Yr(0l M(1)[N11(1, 2, 3) M(1) 

+ N 12(1, 2, 3) M(2 )+  N 13(1, 2, 3) M(3)] 10) (4.8) 

In the last term we have used the symmetry of g(1, 2, 3) to perform an 
interchange of labels. Similarly, we find 

23(1, 2b 1, 3 )+#3(1  , 212, 3 )+#3(1  , 311, 2 )+#3(1 ,  3[3, 2) 

= 4rcce2 n dR2dR3k(1,211,3) 

•  N11(1, 2 ) +  M(2) N21(2, 1)] M(1) 

x [NIl( l ,  3) M(1)+  N13(1, 3) M(3)] [0) (4.9) 

Here we have used that a three-body nodal connector with a slash fac- 
torizes into a product of two-body nodal connectors with an intermediate 
scatterer. For example, 

N12(1, 2[2, 3 ) =  N12(1, 2) M(2) N22(2, 3) (4.10) 

The integral in (4.8) is the more difficult to evaluate, since the nodal con- 
nectors appearing there involve the solution of a three-body scattering 
problem. In the next section we investigate the three-body nodal connectors 
in more detail. 
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5. N O D A L  C O N N E C T O R S  

In this section we describe the nodal connectors which have appeared 
in the expressions of the preceding section. We consider first the nodal con- 
nector Nu(1,2) .  It is associated with the sum of scattering sequences 
E121]  + E 1 2 1 2 1 ]  + --. describing repeated scatterings between the two 
inclusions 1, 2, with the condition that the first and last scatterer be 1. 
Explicitly the connector is 

Nn(1, 2) = 0(1) GoM(2)[I - Go M(1) Go M(2)]-~ Go0(1) (5.1) 

where the 0 operator is defined by 

0(1; r, r ') = O(a - Ir - Rll)  cS(r - r ') (5.2) 

It localizes the field points r and r' to the volume of inclusion 1. 
Similarly, the connector N 12(1, 2) corresponds to the sum of scattering 

sequences E12] + [ 1 2 1 2 ]  + . . . ,  and is given explicitly by 

N12(1, 2) = 0(1) Go[I - M(2) GoM(1)Go] 10(2) (5.3) 

Next we consider the three-body connectors. Some of these have a 
slash indicating a nodal point. A label j is a nodal point of the scattering 
sequence [ 1 2 - . - ] ,  if at that point the label j may be replaced by j ] j  such 
that all labels to the left of the slash have only the label j in common with 
those on the right. The three-body connectors with a nodal point factorize 
as in (4.10). The nodal connectors Nu(1, 2, 3), N~2(1, 2, 3), and N13(1, 2, 3) 
correspond to ~scattering sequences without nodal points. In particular, the 
connector Nn( 1 ,2 ,3 )  corresponds to the sum of scattering sequences 
[ 1 2 3 1 ]  + [ 1 2 3 2 1  ] + . . . ,  the conditions being that, reading from left to 
right, the first and last scatterer be 1, that the scattering sequence contain 
no nodal point, and that the labels 1, 2, 3 first appear in this order. 
Similarly, the connector N12(1, 2, 3) corresponds to the sum of scattering 
sequences [ 1 2 3 1 2 ] + [ 1 2 1 3 1 2 ] + . . - ,  with the same conditions as 
before, except that now the last scatterer must be 2. Finally, the connector 
N~3(1, 2, 3) corresponds to the sum of scattering sequences [ 1 2 3 1 3 ]  + 
E 1 2 1 3 2 3 ]  + ..- with the same conditions as before, except that the last 
scatterer must be 3. 

In I we have expressed the connectors NIj(1, 2, 3) in terms of a sum 
of sequences of two-body connectors. This corresponds to a resummation 
of scattering sequences similar to the binary collision expansion familiar 
from the kinetic theory of gases. (6'7) However, we have found in explicit 
calculations that a different expression, in which no resummation is carried 
out, is to be preferred. 
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Quite generally, for N scatterers we may write the N-body T-matrix (8) 
in the form 

T(1,..., N) = ~ Tjk(1 ..... N) (5.4) 
i ,k 

where Tjk(1 ..... N) may be represented by a sum of scattering sequences 
with the condition that the first scatterer be j and the last one be k .  This 
may be expressed by the relation 

Tjk(1,..., N) = O(j) r(1,..., N) O(k) (5.5) 

It is convenient to introduce a connection operator V(1,..., N) by the 
equation (9) 

T( 1 ..... N) = Mo( 1,..., N) 

-4- Uo(1, ..., N) V(1,..., N)/o(1, . . . ,  N) (5.6) 

where Mo(1,..., N) represents the sum of isolated scatterers 
N 

Mo(1 ..... N) = ~ i ( j )  (5.7) 
j=l  

with M(j)= T(j). In analogy to (5.4) we may write V(1,..., N)  as a sum of 
connectors 

V(1 ..... N) = ~ Vim(1 ..... N) (5.8) 
jm 

The separate terms are given by 

Vim(I,..., N) = O(j) GoO(m)(1 - 5jm) + O(j)Go ~ TklGoO(m) (5.9) 
k # j  
l ~ m  

The operators Tjk(1 ..... N) and Vjk(1,...,N) may be regarded as 
elements of an N • N matrix. We introduce the N • N operator matrix 

d/{ (x) = | M(2) (5.10) 

0 M(N) 

and similarly 
~ ( N )  = 

O(N) Go0(1) 

0(1)Go0(2 ) 0(1)Go0(3 ) .-- 0(1)Go0(N) \ 
0 ) 0 0 ( N - l )  GoO(N) 

... O(N) GoO(N-1) 0 

(5.11) 
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The corresponding operator matrix ~-(N) is defined by 

~'-(N) = ,~[(N)[I(N ) _ ~ ( N )  / ~ ( N ) ]  1 (5.12) 

The operator Tjk(1,..., N) is the jk element of this matrix. In analogy to 
(5.6), we also introduce the Nx  N operator matrix .//~(U) by 

~-'-(N) = ~df(N) "1- ~ /~(N) ,~(N)~/~(N)  (5.13) 

From (5.12) we find 

, ~ ( N )  = ~ ( N ) [ I ( N )  - ~ ( N ) ~ ( N ) ]  1 (5.14) 

The connector Vjk(1,..., N) is the jk element of this matrix. 
The two-body nodal connectors may be identified as 

Nll(1,2)=V11(X, 2 ), N12(1,2)mVt2(1,2 ) (5.15) 

where the boldface notation emphasizes the Cartesian tensor character. The 
three-body nodal connectors may be expressed in two alternative ways. In 
the first formulation we simply sum all scattering sequences which con- 
tribute and find 

Nil(l, 2, 3) = 

Nx2(1 , 2, 3)= 

N13(1, 2, 3) = 

N11(1, 2) M(1)[NH(1, 3) M(1) 

+ N 13(1, 

+ N12(1, 

-t- N23(2, 

Nil(l, 2) 

+ N13(1, 

+ N 12(1, 

+ N23(2, 

Nl1(1, 2) 

+ NI3(1, 

+ N12(1, 

+ N23(2, 

3) M(3)] GoM(2)V21(1, 2, 3) 

2) M(2)EN22(2, 3) M(2) V21(1 , 2, 3) 

3) M(3) V31(1, 2, 3)] 

M(1)I-NH(1, 3) M(1)V12(1 , 2, 3) 

2, 3) M(3) V32(1, 2, 3)] 

2) M(2)[-N22(2, 3) M(2) 

3) M(3)] GoM(1)V12(1, 2, 3) 

M(1)[Nl~(1,3) M(1) 

3) M(3)] GoM(2)V23(1, 2, 3) 

2) M(2)I-N22(2, 3) M(2) 

3) M(3)] GoM(1)V13(1, 2, 3) (5.16) 

In the second formulation we first sum over arbitrary scattering sequences 
and then exclude those specified by the definition of the nodal connectors. 
Thus, we obtain 
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Nl1(1 , 2, 3)= Vii(1 , 2, 3 ) -  N,,(1, 2 ) -  Nil( l ,  3 ) -  NH(1, 2) M(1) Nl1(1 , 3) 

- [NH(1, 3) a ( 1 ) +  N13(1, 3) M(3)]  Goa(2 ) V21(1, 2, 3) 

N12(1, 2, 3)= V12(1 , 2, 3 ) -  N12(1, 2 ) -  N12(1 , 2) M(2) N22(2, 3) 

- -  [N , I ( I  , 3) M(1 )+  N~3(1, 3) M(3)]  Go[0(2 ) 

+ a(2) V:2(1, 2, 3)] 

N 13(1, 2, 3 ) =  V13(1 , 2, 3 ) -  N13(1, 3)  

-- Nit(l, 2) M(1) N13(1, 3 ) -  N12(1, 2) M(2) N23(2, 3) 

- -  [Nl1(1 , 3) M(1)+ N~3(1, 3) M(3)] GoM(2 ) V23(1, 2, 3) 

(5.17) 

Summing and symmetrizing with respect to the labels 2 and 3 we find 

N~I(1, 2, 3)+ NI,(1, 3, 2)+ N12(1, 2, 3) 

+ N~2(1, 3, 2)+ N 13(1, 2, 3)+ N 13(t, 3, 2) 

= Vl1(1 , 2, 3) + V12(1, 2, 3) + V13(1, 2, 3) 

- -  V l l ( l  , 2 )  - -  V i i ( 1  , 3 )  - -  V12(1, 2) - Vt3(1, 3) 

-V11(1, 

- V . ( 1 ,  

-V12(1, 

- V 1 3 ( 1 ,  

This last expression will be 

2) M(1)[Vu(1, 3)+ V,3(1, 3)] 

3) M(1)[V,,(1, 2) + V12(1, 2)] 

2) M(2)[V22(2, 3) + V23(2, 3)] 

3) a(3)[V32(2, 3)+ V33(2 , 3)] 

used in the following. 

(5.18) 

6. POLARIZABLE POINT DIPOLE M O D E L  

The expressions for the nodal connectors derived in the preceding 
section may in principle be used to evaluate the integrals in (4.8) and (4.9). 
Here we specify the integrals in more detail for the polarizable point dipole 
model. For this model the two-body nodal connectors have been given 
explicitly in (1.8.2)and (I.8.3). 

We consider first the integral in (4.9). To express the result in a 
concise way, we introduce the dimensionless variables 

a 3 a 3 a 3 ~31 a3 
3 ' q = R  3 r =  z = - -  (6.1) 

P --  RI2  3' 3 ~ R13 
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By straightforward calculation we find that the integral in (4.9) is given by 

23(1, 21 1, 3 )+  ~t3(1,212, 3)+/~3(1, 3IA, 2)+#3(1,  3t3, 2) 

n f -- 4rca 3 z dR2 dR 3 k(1, 2[ 1, 3) F(p, r, 01; z) (6.2) 

Here 01 is the angle between the vectors R12 and R13 , and the function 
F(p, r, 01; z) is given by 

(3 C O S  2 0 1  - -  1 ) Z  2 "t- 4pr 
F(p, r, 01" ~ Z)  = 3pr (6.3) 

(z + p)(z - 2p)(z + r)(z - 2r) 

In the limit of large z, corresponding to small e, the integral in (6.2) 
reduces to the three-body integral of Kirkwood (1~ and Yvon. (11) 

The integral in (4.8) is of the form 

J = f  dR 2 dR 3 g(1, 2, 3 ) f (1 ,  2, 3) (6.4) 

where by isotropy and translational invariance the functions g(1, 2, 3) and 
f (1 ,  2, 3) depend only on the variables R12, R13, and cos01. We may 
therefore transform to 

J = 8 g  2 g(1, 2, 3 ) f (1 ,  2, 3 2 2 ) R12R13 dR12 dRl3 d(cos 01) (6.5) 
a a - - 1  

The integrand may be symmetrized with respect to the labels 2 and 3. Of 
course, the distribution function is already symmetric, so that we may use 
the symmetrized sum of nodal connectors given in (5.18). The integral in 
(6.5) may be cast in the form 

J =  8g 2 g(1, 2, 3) f (1 ,  2, 3) Ra2R13R23 dR12 dRy3 dR23 (6.6) 
a a a 

with the convention that g(1, 2, 3) vanishes when the triangle condition on 
the variables R12, R13, and R23 is not satisfied. Hence, we may also sym- 
metrize the integrand with respect to the labels 1, 2, and 3. This completely 
symmetrized form is of advantage in.the polarizable point dipole model. 

To find the matrix element appearing in (4.8) for the polarizable point 
dipole model, it suffices to solve the problem of three coupled induced 
dipoles in a uniform applied field. That is, we must solve the set of coupled 
equations 
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Pl = 7 l E o  + T12" P2 + T13" P3] 

P2 = ~ + T21" Pl + T23" P33 

P3 = ~[Eo + T31" Pl + T32" P23 

(6.7) 

where the dipole tensor is given by (2.11). We may solve the last two 
equations for P2 and P3 in terms of E0 and Pl, and substitute into the first 
equation. We may simplify the problem further by choosing the z axis 
perpendicular to the plane containing the three centers. We are then left 
with two coupled equations for the components P~x and p~y, and with one 
equation for P~z. The solution allows us to find the matrix elements of the 
operators Vii(l, 2, 3) in (5.18). 

As a final result, we find 

.~3(1, 2, 3) + #3(1, 2, 3) + /~3(1, 3, 2) 

3a 3 z g(1, 2, 3)[Gxy(1, 2, 3)+  Gz(1, 2, 3) 
a a a 

- F ( p ,  r, 01 ; Z) - -  F(q, p,  02; z )  - F(r, q, 03 ; z)  

- H(p,  z) - H(q, z) - H(r, z) - 3]R12R13R23 dR12 dR13 dR23 (6.8) 

with dimensionless functions Gxy  , Gz, F, and H. The function Gz(1, 2, 3) is 
given by 

Gz(1, 2, 3) = N~/D1 (6.9) 

with the abbreviations 

N 1 = (z - p)(2 - q)(z - r) 

D l = Z 3 - ( p 2  +q2 +r2)z  + 2pqr 
(6.10) 

The function Gxy(1, 2, 3) is more complicated and is given by 

Gxy(1, 2, 3 )=  
9 ( z P -  Q) + NID2 + N2D1 

9Q + D1D2 

with the abbreviations 

(6.11) 

N2 = (z + 2p)(z + 2q)(z + 2r) 

D2 = z 3 - 4(p 2 + q2 + r Z ) z  _ 16pqr 

P = Az3 + Bz2 + Cz + D 
(6.12) 

Q =  Rz3-t- szZ + Tz + U 
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where in turn 

A = - ( s  1 Av s 2 Av s3) 

B=3s123-- (p  + r)s l  -- (q + p ) s 2 - -  (r + q)s  3 

C = (2p 2 + pr + 2rZ)sl + (2q 2 + qp + 2p2)s2 

+ (2r 2 + rq + 2q2)s3 - 2(p + q + r)s123 

q- pC3,12 -q- qcl,23 q- rc2,31 (6.13) 

D = (9s 1 -2q2)cl,23 + (9s 2 -2r2)c2,31 + (9s 3 -2p2)c3.12 

R = 2s123 

S = prs 1 + qps 2 + rqs 3 

T =  - -  4(p2c3,12 q- q2cl,23 -[- r2c2,31) 

U = - -  9s223 

In the latter expressions we have used the abbreviations 

sl = prsin 2 01, s2 = qp sin 2 02, s 3 = rq sin 2 03 

s123 = �89 2 01 + sin 2 02 + sin 2 03) 

Ci, jk = �89 20j  + sin 2 Ok -- sin 2 0i) (6.14) 

Here 0 2 is the angle between R21 and R23 , and 0 3 is the angle between R31 
and R32. Finally, the functions H in (6.8) are given by 

6p 2 
H(p ,  z ) -  (6.15) 

( z + p ) ( z - 2 p )  

These functions arise from the two-body nodal connectors in the form 

Tr(0L M(1)[NlI(1, 2) M(1)+  N12(1, 2) M(2)] t 0 )=  aH(p,  z) (6.16) 

We note that the subtracted terms in (6.8) make the integral absolutely 
convergent. 

7. D I S C U S S I O N  

We have studied the three-body cluster integrals 23 and/~3, as defined 
in (1,1) and (1.2). Our final results for the polarizable point dipole model 
are given in (6.2) and (6.8). Even for this simple model the expressions are 
complicated and the final integrals can be evaluated only numerically. It 
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would  be of  interest  to compare  the theoret ica l  results with the e lect ros ta t ic  
spect ra  we have ob ta ined  in a c o m p u t e r  exper iment  for a ha rd-sphere  fluid 
with po la r izab le  po in t  dipoles.  (lz) 

F o r  more  realist ic models ,  say uniform spherical  inclusions with a 
dielectr ic cons tan t  e2, the ca lcula t ion  of the th ree -body  integrals  will be 
cons iderab ly  more  difficult. As a first s tep beyond  the polar izab le  po in t  
d ipole  mode l  one might  a t t empt  to include quadrupoles .  The quad rupo le  
con t r ibu t ion  to the t w o - b o d y  cluster integrals  has a l ready  been s tudied by 
Fe lde rho f  and  Jones. (13) 
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